Teaching Topics for High School – Human Factors in Space

Psychology:

How the Human Brain Works?

Store and process information

Learning Models for Stress Situations

Training and Practice Models

Workstation Design

Environmental Design for ICE

Reaction Times in Microgravity (ugravity)

Psychological Factors in ICE

Motivational Models in ICE

Workload Design Considerations

Sociology:

Hierarchical and Personal Interaction Models in ICE Group Dynamic Models in ICE

Human Physiology:

Earth Physiology vs. Space Physiology: All human systems

Neuro-vestibular

Musculo-skeletal

Cardio-Vascular

Cardio-Pulmonary

Renal Endocrine

Blood/Immune

Sensory and Balance

Human Performance Capabilities

Motor Skills and Reaction Time Considerations

Science, Math, and Engineering:

Designing for the Microgravity Environment

Trigonometry of Workstation Design

Local Vertical Design Principles

Ergonomics and Mean Percentile/Deviation

The Physics of Closed Systems in µgravity

Fluid Dynamics and Flow

Pressure/Gas Laws

Kinesthesic and Strength Design Considerations

Force and Push-off velocity of American Males in µgravity

Moments of Inertia, Center of Mass

Biomechanics: Reach, Posture, Body Surface Area and Volume Considerations

Wright Patterson Air Force Base